Chitosan/PVA based membranes processed by Gamma radiation as scaffolding materials for skin regeneration

  • Articles in SCI Journals
  • Dec, 2021

Casimiro, M.H., Pereira, A., Leal, J.P., Rodrigues, G. & Ferreira, L.M. (2021) Chitosan/PVA based membranes processed by Gamma radiation as scaffolding materials for skin regeneration.

Membranes, 11(8), 561. DOI:10.3390/membranes11080561 (IF2021 4,562; Q2 Qhemistry, Physical)
Summary:

Some of the current strategies for the development of scaffolding materials capable of inducing tissue regeneration have been based on the use of polymeric biomaterials. Chitosan, in particular, due to its recognized biological activity has been used in a number of biomedical applications. Aiming the development of chitosan-based membranes with improved cell adhesion and growth properties to be used as skin scaffolds allowing functional tissue replacement, different formulations with chitosan of different molecular weight, poly (vinyl alcohol) and gelatin, were evaluated. To meet the goal of getting ready-to-use scaffolds assuring membranes’ required properties and sterilization, preparation methodology included a lyophilization procedure followed by a final gamma irradiation step. Two radiation dose values were tested. Samples were characterized by TGA, FTIR, and SEM techniques. Their hydrophilic properties, in vitro stability, and biocompatibility were also evaluated. Results show that all membranes present a sponge-type inner structure. Chitosan of low molecular weight and the introduction of gelatin are more favorable to cellular growth leading to an improvement on cells’ morphology and cytoskeletal organization, giving a good perspective to the use of these membranes as potential skin scaffolds.


https://www.mdpi.com/2077-0375/11/8/561

Team

  • Chitosan/PVA based membranes processed by Gamma radiation as scaffolding materials for skin regeneration Gabriela Rodrigues Development and Evolutionary Morphogenesis - DEM