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Abstract

1. Spiders are among the most diverse and yet threatened groups of arthropods in

Macaronesia. Found in most habitat types, they occupy the vertical gradient of

native forests from ground to canopy level.

2. We hypothesize that their vertical distribution is influenced by the colonization

origin. As introduced species should arrive using shipping containers and similar

means, they should mostly occupy the lower levels in the gradient, with potential

negative effects on the indigenous epigean fauna.

3. Spiders were sampled from epigean to arboreal microhabitats (maximum height

varying between 2 and 4 m) on 45 sites across five islands belonging to three archi-

pelagos. The mean and range of vertical stratification were obtained for each

captured species. These values were then compared between different colonization

origins at Macaronesian and archipelagic levels.

4. Native non-endemic species were found at significantly higher vertical strata than both

endemic and introduced species. Likewise, native non-endemics had a larger vertical range.

These patterns were largely replicated across archipelagos, although there were

exceptions.

5. Overall, introduced species do not seem to occur mostly at lower strata in the

native forests of Macaronesia (at least in the studied vertical range) but seem to be

vertically restricted in most settings with the exception of Madeira.
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INTRODUCTION

In many islands, native habitats have been extremely reduced by histori-

cal human-mediated change and degradation (Ewers et al., 2006;

Fernández-Palacios et al., 2021; Kueffer & Kinney, 2017), with most of

the endemic diversity now restricted to the remaining montane forests.

The Macaronesian islands (Azores, Madeira and Canary Islands)

have suffered massive anthropogenic impacts, but they still host a large

diversity of endemic flora and fauna in their unique native forests,

which occur mostly between 500 and 1200 m altitude (Elias

et al., 2016; Fernández-Palacios, 2013; Gouveia, 2005). Although most

of these areas are now protected (Borges et al., 2005; del Arco Aguilar

et al., 2010; Gouveia, 2005), their biota may still be under pressure

from key biodiversity erosion drivers, such as climate change and the

spread of introduced, often invasive species (Borges, Santos,

et al., 2020; Fernández-Palacios & Whittaker, 2008; Ferreira

et al., 2016; Gouveia, 2005). In the case of arthropods, at least 39% of

all recorded species in the Azores, 19% in Madeira and 8% in the

Canary Islands are thought to have been introduced due to human

activities (Borges, Aguiar, et al., 2008; Borges, Lamelas-Lopez, Andrade,

et al., 2022; Oromí & Báez, 2010). By establishing populations in the

habitat matrix that envelops protected sites, vagrant individuals of

introduced species can then venture into the areas of native forests

(Borges, Lamelas-Lopez, Andrade, et al., 2022; Borges, Rigal,

et al., 2020; Borges, Ugland, et al., 2008; Gouveia, 2005). As introduced

species might compete with indigenous species for resources, or

directly predate or parasitize them (Borges & Wunderlich, 2008;

McNatty et al., 2009), it is important to document how they differ from

the latter in their ecological traits, such as their micro-habitat prefer-

ences, and this way better understand possible negative interactions

(Boieiro et al., 2018; Rigal et al., 2018; Whittaker et al., 2014).

Studies conducted on Azorean native forests have shown that intro-

duced species better succeed to establish at the soil level, whereas cano-

pies still seem to be dominated by indigenous (endemic and native non-

endemic) species (Borges & Wunderlich, 2008; Florencio et al., 2016;

Gaspar et al., 2008). However, for Madeira and the Canary Islands archi-

pelagos, these patterns are still poorly understood, with studies on inva-

siveness mostly focusing on epigean species (Arndt & Perner, 2008;

Boieiro et al., 2018; Lobo & Borges, 2010). Overall, few studies have

investigated how introduced arthropods have invaded the vertical gradi-

ent in Macaronesia native forests and what their vertical stratification

can tell us about their impact on the indigenous arthropod fauna.

In Macaronesia, spiders are some of the best studied groups of

arthropods (Arnedo et al., 2001; Borges & Wunderlich, 2008; Cardoso

et al., 2010; Crespo et al., 2014) being ubiquitous predators that occur

in great numbers in different microhabitats of native forests (Boieiro

et al., 2018; Crespo et al., 2014; Gaspar et al., 2008). Some endemic

species are known to have experienced species reductions and extinc-

tions in the past (Cardoso et al., 2010; Crespo et al., 2022), making

spiders good monitoring organisms in this system (Borges, Cardoso,

Kreft, et al., 2018; Gaspar et al., 2010).

Most spider species are not evenly distributed along the vertical

gradient in forests (from ground to canopy). Some species are preferen-

tially associated with specific vertical layers (i.e. microhabitats), which is

linked to their foraging strategy and preferred prey (Blackledge

et al., 2003; Domènech et al., 2022; Yanoviak et al., 2003). On islands,

successful colonizers may occupy a wider range of niches than on the

mainland (Blackledge et al., 2003; Costa et al., 2008; Gillespie, 2005),

sometimes showing intraspecific niche variation and expansion

(Cotoras et al., 2021). Instead, species that evolve in sympatry might

have specialized in different niches (Blackledge et al., 2003;

Gillespie, 2005).

The so-called ‘verticality’ of the preferential microhabitat might

also be related to other species’ traits. In the case of spiders, species

in lower, epigean micro-habitats often disperse using cursorial

movements, whereas arboreal species more often disperse by aerial

means involving ballooning (Bell et al., 2005; Malumbres-Olarte

et al., 2021). The lower dispersal ability of species can affect gene

flow, and the isolation of the populations can favour speciation

(Gillespie et al., 2008; Suárez et al., 2022). Indeed some of the biggest

radiations in Macaronesia have occurred within epigean spider clades,

the best example being the genus Dysdera (Arnedo et al., 2001;

Crespo et al., 2021). However, this might make epigean species more

vulnerable to environmental changes (Chichorro et al., 2022), includ-

ing higher competition with introduced congeners, especially if indige-

nous species are also habitat specialists and have small ranges (Boieiro

et al., 2018; Malumbres-Olarte et al., 2021).

Adding to the natural vulnerability of epigean indigenous species,

introduced spiders are, in principle, more likely to also be epigean, as

they benefit from human transportation through shipping by using

crates, containers or similar means (Nentwig & Kobelt, 2010). One

can, therefore, expect that introduced species will more likely colonize

epigean micro-habitats, where many of the indigenous, including

endemic, species occur.

In this work, we aim to test whether indigenous (endemic and

native non-endemic) and introduced species differ in their vertical

distribution along an epigean-canopy gradient to understand (i) how

introduced species succeeded in colonizing Macaronesian forests, and

(ii) how their micro-habitat preference might lead to increased pres-

sure over their endemic and native non-endemic counterparts.

We investigate if species with different colonization origins

(endemic, native non-endemic and introduced) differ: (i) in their pre-

ferred vertical stratum (mean verticality), (ii) in their vertical range (stan-

dard deviation of verticality) and (iii) if these potential differences vary

between archipelagos. For our first objective, at the Macaronesia level,

we expect to find a higher proportion of introduced species at lower

vegetation levels (soil and herbaceous vegetation), while endemic and

native non-endemic species should be found on all strata. For the sec-

ond objective, we explore two alternative hypotheses: (a) endemic and

introduced species should have smaller ranges when compared to

native non-endemic, as endemic species should be more specialized in

particular niches and so be more vertically restricted, while introduced

species should be less adapted to the native forest and so be restricted

in the range of microhabitats they were able to colonize (Borges &

Wunderlich, 2008), or (b) native non-endemic and introduced species

might have larger vertical range compared to endemics due to higher

plasticity and ability to survive a broader range of environmental condi-

tions (Borges, Ugland, et al., 2008; Borges & Wunderlich, 2008;
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Gillespie et al., 2008). For the last objective, in Madeira and the Canary

Islands, we expect higher specialization of endemic species, as these

not only had more evolutionary time to adapt to certain micro-habitats,

both archipelagos being older than 14 Myr (Fernández-Palacios

et al., 2011), but also given the high local species richness we expect

spider species to partition the vertical space more finely to avoid com-

petition (Cardoso et al., 2010; Triantis et al., 2012). For the Azores, a

more isolated and younger archipelago with a known depauperate

arthropod fauna, introduced spiders should show high overlap with

indigenous species and high vertical range (Whittaker et al., 2014), due

to less competition in most strata and lower stratification of the forest

canopy (Borges, Ugland, et al., 2008; Fernández-Palacios, 2010).

MATERIALS AND METHODS

Study sites

In this study, we used data collected from five islands belonging to

three Macaronesian archipelagos, [the Azores (Pico and Terceira

Islands), Madeira (Madeira Island) and the Canary Islands (La Gomera

and Tenerife Islands)] where humid forests dominated by Laurel

elements occur (Fernández-Palacios et al., 2011; Neto et al., 2020) (see

Appendix S1 for a detailed description of the studied forests). On these

islands, 50 � 50 m plots were established in native forest sites, six in

Pico, 10 in Terceira, 12 in Madeira, seven in La Gomera and 10 in Tene-

rife (see Cicconardi et al., 2017; Malumbres-Olarte et al., 2019, 2020,

2021). For Terceira and Tenerife 10 sites were selected based on the

presence of pristine forest within the framework of NETBIOME project

(see Cicconardi et al., 2017). For the other islands, the sites sampled

were chosen to study the influence of distance-decay between sites on

patterns of alpha and beta diversity (for more details see Borges, Car-

doso, Fattorini, et al., 2018; Malumbres-Olarte et al., 2021). All plots

were set up inside fragments of native mesic forests dominated by

endemic trees and shrubs (Borges, Cardoso, Fattorini, et al., 2018;

Malumbres-Olarte et al., 2019, 2020, 2021).

Sampling protocol and identification

The analysed dataset was built from collections of spider specimens

using the COBRA (Conservation Oriented Biodiversity Rapid Assess-

ment) sampling protocol (Borges, Cardoso, Kreft, et al., 2018;

Cardoso, 2009). This protocol has demonstrated its effectiveness to

study patterns at large scales—for islands, archipelagos and mainland

spider communities (Domènech et al., 2022; Emerson et al., 2017;

Malumbres-Olarte et al., 2021). The core version of COBRA (see

Appendix S2 for sampling details) consists of nocturnal active aerial

search, net sweeping, vegetation beating and pitfall trapping (for more

details see Cardoso, 2009; Borges, Cardoso, Kreft, et al., 2018). Sam-

pling was performed in 2012 in Terceira, in 2013 in Tenerife and

2016 in the remaining islands. All islands were sampled between April

and September, targeting the period of maximum arthropod richness

in these forests (Malumbres-Olarte et al., 2021).

All spiders were identified to species level and we considered only

adults for analysis. Morphological identification was confirmed with the

mitochondrial cytochrome c oxidase 1 and the nuclear 28 s rRNA

genes, for all species except the following: Argyrodes incertus Wunder-

lich, 1987; Dipoenata longitarsis (Denis, 1962); Oxyopes kraepelinorum

Bösenberg, 1895; Pardosa hortensis (Thorell, 1872); and Tenuiphantes

leprosoides (Schmidt, 1975) (for more details see Emerson et al., 2017;

Malumbres-Olarte et al., 2021). Species names were checked for

updated nomenclature using the R package ‘arakno’ (Cardoso &

Pekar, 2022).

Colonization origin (endemic, native non-endemic and introduced)

was obtained from the latest published species lists for these archipel-

agos (Borges, Lamelas-Lopez, Stüben, et al., 2022; Cardoso &

Crespo, 2008; Macías-Hernández, 2010; Suárez & Oromí, 2018), as

well as from the expertise of the authors on the local arachnofauna

and consulting their known distribution in the World Spider Catalog

(World Spider Catalog, 2022). We followed the criteria of Borges,

Lamelas-Lopez, Stüben, et al. (2022) for the classification of species

into different colonization origins, considering also the distribution of

species in non-native habitats (Borges et al., 2010). For species that

were considered with different origins in different archipelagos, we

considered them in both groups (e.g. endemic and introduced) for the

analysis of the dataset at the Macaronesia level. Macaronesian

endemics were considered native non-endemic, as their large distribu-

tion should make them show patterns more similar to native non-

endemic species than to archipelago endemics.

All voucher specimens are deposited at EDTP—Entomoteca Dal-

berto Teixeira Pombo, Campus de Angra do Heroísmo, Portugal, and

data from Azores and Madeira can be assessed in Malumbres-Olarte

et al. (2019, 2020).

Verticality metrics

Two metrics of verticality were calculated for each species at each site

where it occurred: the mean verticality or preferred vertical stratum

(hereafter AVG V), being the stratum along the vertical gradient where

the species should most often occur, and its associated standard devi-

ation (hereafter STD V) as a measure of vertical range, meaning the

distribution of the species along the gradient. The AVG V is adapted

from Macías-Hernández et al. (2020). Details of the calculation are

given below. First, a score between 0 and 3 was assigned to each

sampling method (0 for pitfall, 1 for sweeping, 2 for active aerial

search and 3 for beating). Scores were then divided by 3 to obtain

AVG V values ranging from 0 (for more epigean species) to 1 (for more

arboreal species). Next, the relative abundance of the species was cal-

culated for each method (i.e. score) as follows:

pijk ¼
nijk
Njk

ð1Þ

where nijk and pijk are the abundance and relative abundance of the spe-

cies i for the score j in the site k, respectively, and Njk is the total abun-

dance of spiders of the score j at the site k. Relative abundance was

888 COSTA ET AL.
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preferred over raw values, as different sampling methods yield different

total abundances (i.e. the most abundant species in sweeping may have

the same abundance as a species of intermediate abundance in beat-

ing). We then normalized the relative abundances to obtain a propor-

tion summing to 1 across the vertical gradient as follows:

qijk¼ pijk
P4

j¼1 pijk
ð2Þ

where qijk is the normalized relative abundance. The mean verticality

of a species at a given site was then calculated as follows:

AVG_Vik ¼
Xm

j¼1

qijk�Sj ð3Þ

where AVG Vik is the mean verticality of the species i in site k and Sj is

the score for method j, and m being the number of unique scores. We

calculated the standard deviation as follows:

STD_Vik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

qijk� Sj_AVG_Vik

� �2

v
u
u
t ð4Þ

Finally, for a given species, the values AVG Vik and STD Vik were

averaged across all sites k where the species occurred to obtain the

species-level values mAVG V and mSTD V at the Macaronesia and

archipelago levels (see Figure 1 for the overall trait-space and how

these would match our hypothesis at the Macaronesia level).

Statistical analysis

To verify if the spider species diversity was properly sampled in our

study area, we estimated the values of sampling coverage and com-

pleteness using the Jacknife1 (P-corrected) estimator (Chao &

Jost, 2012; Heltshe & Forrester, 1983; Lopez et al., 2012) calculated

for the entire dataset and each archipelago. Species present only in

one site (uniques) were discarded from further analysis to try to pre-

vent the influence of rare, and pseudo-rare species on our results

(Borges, Ugland, et al., 2008). The verticality values of mAVG V and

mSTD V obtained were then compared between groups of different

colonization origins using Kruskal–Wallis tests (KW), as they did not

fulfil the statistical assumptions for analysis of variance (ANOVA). This

was done both at Macaronesian and archipelago levels. When the

overall KW was statistically significant at alpha <0.1, Dunn’s tests

were performed to identify statistically significant pairwise differences

between colonization origins (see Appendix S3 for information on

colonization origin). An alpha <0.1 was used as we found several

tests between this value and 0.05 to be worth further analysis and

discussion. To test if the different colonization origins were

F I GU R E 1 Theoretical space of the verticality values that can be obtained, with the y-axis showing the possible values for mAVG V
(preferred vertical stratum) while mSTD V (vertical range) is represented on the x-axis. mAVG V varies between 0 (species only in pitfall) and
1 (species only in beating), while mSTD V varies between 0 (only in one method) and 0.5 (species equally in beating and pitfall). The shaped dots
represent theoretical species that form patterns that explain the hypothesis we want to verify at the Macaronesia level. The red dot marks the
coordinates of a hypothetical super-generalist (mAVG V = 0.5 and mSTD V = 0.37), which would be any species that would have the same
relative abundance at all the strata sampled, and so a normalized relative abundance of 0.25 for each method (summing to 1–100% of the
specimens captured) was considered for the calculation. Red dotted lines divide species according to their mAVG V corresponding to the
microhabitats of vegetation until knee level sampled by sweeping (mAVG V = 0.33) and higher vegetation and tree trunks sampled by AAS
(mAVG V = 0.67).
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preferentially associated with either the epigean or the arboreal stra-

tum, we applied one-sample Wilcoxon signed rank tests to quantify

if the mAVG V values were significantly above (arboreal species) or

below 0.5 (epigean species). All statistical analyses were performed

using the R software version v.4.1.0 (R Core Team, 2021).

RESULTS

General patterns

A total of 10,609 adult specimens were identified as belonging to

123 species in 23 different spider families. Sampling completeness

was higher in the Azores and Madeira (58%) than in the Canary

Islands (53%). Sampling coverage was always above 90%. From the

initial dataset, 43 specimens belonging to 21 species were consid-

ered uniques (mostly endemic species) as they occurred only at one

site in the whole dataset and so were removed from further ana-

lyses. The remaining included a total of 102 species in 22 families,

most being endemic (59), with only 28 native non-endemic and

16 introduced. Steatoda nobilis (Thorel, 1875) was the only species

for which we considered a different colonization origin between

archipelagos, endemic (Madeira) and introduced (the Azores and the

Canary Islands). The reasons behind this decision were: it being con-

sidered probably introduced in the Canary Islands (Macías-

Hernández, 2010; Suárez & Oromí, 2018) and its presence in differ-

ent continents and its occurrence in both native and non-native hab-

itats in the Azores.

The Canary Islands are the archipelago with the most species

sampled with a total of 57 (including 32 endemics, 21 native non-

endemic and four introduced) followed by Madeira with 34 species

(14 endemics, 15 native non-endemic and five introduced) and the

Azores with 31 species (13 endemics, six native non-endemic and

12 introduced). Linyphiidae were the most species-rich family in all

the archipelagos, although closely followed by Theridiidae in the

Canary Islands and Madeira.

Vertical stratification of species of different
colonization origins

At the Macaronesia level, native non-endemic species had the highest

median value of AVG V [0.67, Interquartil range = 0.22 (from here on

IQR)], followed by endemic (0.54, IQR = 0.58) and introduced (0.53,

IQR = 0.40). Introduced species did not show significant differences

from either of the other two categories (see Figure 2a). Only native non-

endemic species had AVG V significantly above 0.5 (p-value = 0.0298).

At the archipelago level, the result was again of no significant differences

between the three colonization origin groups. Native non-endemic spe-

cies showed the highest median AVG V values (AZO: 0.53, IQR = 0.32;

CAN: 0.51, IQR = 0.43; MAD: 0.73, IQR = 0.25). In Madeira (see

Figure 2d) these were followed by endemic (0.58, IQR = 0.24) and then

introduced species (0.33, IQR = 0.56), and in the Azores and the Canary

Islands (Figure 2b,c) by introduced (AZO: 0.53, IQR = 0.32; CAN: 0.51,

IQR = 0.43) and finally by endemic (AZO: 0.49, IQR = 0.58; CAN: 0.51,

IQR = 0.67). Native non-endemic species had AVG V significantly above

0.5 both in Madeira (p-value = 0.0473) and in the Canary Islands (p-

value = 0.0327).

F I G U R E 2 Species distribution at the Macaronesian (a) and
archipelago levels (b) – Azores, (c) – Canary Islands, (d) – Madeira

according to their two verticality values, the y-axis representing
mAVG V (preferred vertical stratum) values (ranging from 0 to 1) and
the x-axis representing mSTD V (vertical range) values (ranging from
0 to 0.5). Each point represents a distinct species except in the case of
Steatoda nobilis, which is represented by two points of different
colonization origins according to the archipelago. The red dot marks
the coordinates of a hypothetical super-generalist (mAVG V = 0.5
and mSTD V = 0.37), which would be any species that would have
the same relative abundance at all the strata sampled, and so a
normalized relative abundance of 0.25 for each method (summing to
1–100% of the specimens captured) was considered for the
calculation. Red dotted lines divide species according to their mAVG
V corresponds to the microhabitats of vegetation until knee level
sampled by sweeping (mAVG V = 0.33) and higher vegetation and
tree trunks sampled by AAS (mAVG V = 0.67).
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Vertical range of species of different colonization
origins

At the Macaronesia level and for STD V verticality, native non-

endemic species had significantly higher values (0.14, IQR = 0.09)

(see Figure 2a), than both endemic (0.08, IQR = 0.16) and introduced

(0.06, IQR = 0.10) (p-value = 0.0459 and p-value = 0.0058, respec-

tively). Looking at the archipelagos separately, in the Azores we found

significantly lower values between introduced (0.10, IQR = 0.14) and

endemic species (0.16, IQR = 0.14) (p-value = 0.0342), but also com-

pared to those of native non-endemic species (0.15, IQR = 0.02) (see

Figure 2b), although not significant (p-value = 0.0594). In the Canary

Islands, native non-endemic species showed significantly higher values

(0.14, IQR = 0.06) than endemics (p-value = 0.0440 (0.06, IQR = 0.13)

(see Figure 2c). The lowest median value was from introduced species

(0.03, IQR = 0.05), although these were not significantly different from

the rest. In Madeira, none of the colonization origins significantly dif-

fered from each other, albeit introduced and native non-endemic spe-

cies had the highest median values (0.10, IQR = 0.06; 0.10,

IQR = 0.14, respectively), and endemics the lowest (0.05, IQR = 0.12).

DISCUSSION

To our knowledge, this is the first time that vertical stratification pref-

erences of spiders across multiple sites and island colonization origins

were studied. With this work, we were able to evaluate spider micro-

habitat choice, which is deeply connected with multiple other aspects

of their ecology, such as prey preferences (Blackledge et al., 2003),

hunting strategies (Blackledge et al., 2003; Cardoso et al., 2011;

Domènech et al., 2022; Samu et al., 1999) and dispersal ability

(Domènech et al., 2022; Samu et al., 1999). In this context, our study

fills some critical knowledge gaps, regarding the Raunkiaeran shortfall

(i.e. lack of knowledge of species traits and ecological functions, see

Hortal et al., 2015) for spiders.

Colonization origin of species along the vertical
gradient

Contrary to our predictions for the first hypothesis, it appears that the

introduced species were not particularly associated with the lowest-

strata (ground and herbaceous vegetation). Indeed, more than half

had AVG V values of 0.5 or higher, highlighting their preferences also

for trunks and canopy foliage. This is consistent with the idea that

island systems have many vacant niches that can be exploited by

introduced species (Whittaker et al., 2014), although we cannot rule

out the fact that some could be occupying niches left empty by the

extinction of indigenous species (Cardoso et al., 2010).

However, these results should be interpreted with caution given

that we did not sample the full extent of the canopy, especially in

Madeira and the Canary Islands where trees can go up to 30 m (see

Appendix S1). As some common introduced species in the herbaceous

vegetation of disturbed habitats (Borges & Wunderlich, 2008) may be

able to reach the highest strata of the canopy by ballooning, future

studies should test whether the pattern we report here holds when

the entire canopy range is sampled.

Native non-endemic species were mostly arboreal (AVG V values

above 0.5). Unlike endemic species, which tend to have a lower dis-

persal capacity, and introduced species that have travelled with

humans, native non-endemics may be those with the highest dispersal

ability (Carlquist, 1974), being found in places as far apart as Terceira

(Azores) and Tenerife (Canary Islands). Spiders in higher strata are

more prone to ballooning either because they already occupy ideal

‘launch pads’, or because their lifestyle predisposes them to balloon.

Consistent with our findings, Malumbres-Olarte et al. (2021) found

that the native forests are richer in frequent ballooners than dry habi-

tats dominated by herbaceous vegetation. This should also hold when

comparing arboreal and epigean habitats in native forests, as epigean

spiders often lack the conditions to balloon properly in the moist litter

of the forest floor (Bell et al., 2005).

However, long distance dispersal is not always linked to high

dispersal ability, as small organisms can be, for example, passively trans-

ported by birds as it happens with land snails (Whittaker & Fernández-

Palacios, 2006). Furthermore, genetic studies are needed to assess

the origin of many of the native non-endemic species, as some might be

actually introduced species (see Jiménez-Garcia et al., 2023).

Finally, future works should incorporate the verticality of

the juveniles, as it is generally at this stage of life that many species

disperse by ballooning (Blandenier, 2009; Suárez et al., 2022).

Vertical range of species with different colonization
origin

The higher STD V obtained for native non-endemic species supported

one of our alternative hypotheses for this trait (see Figure 2a). As spe-

ciation takes place, spiders might specialize in terms of prey or habitat

(Arnedo et al., 2007; Blackledge et al., 2003; Gillespie et al., 2008).

Because island communities are typically impoverished, competition

might be lower than on continental areas (Costa et al., 2008; Cotoras

et al., 2021), and so many species might tend to be generalists

(Gillespie et al., 2008; Macías-Hernández et al., 2016). Native non-

endemics matched this profile, showing higher vertical range than even

introduced species. Many introduced arthropod species are successful at

colonizing mostly anthropogenic habitats (Borges & Wunderlich, 2008;

Rigal et al., 2018), which greatly differ from the native forests of Macaro-

nesia. As many of our introduced spiders were found in many sites (see

Appendix S4) sometimes in high numbers (Boieiro et al., 2018), their

lower vertical range indicates that even the successful invaders are often

vertically restricted.

Verticality traits at the archipelago level

Specialization during speciation is more likely to happen in geologi-

cally older archipelagos (Gillespie et al., 2008), such as the Canary

Islands (22 My) and Madeira (14 My), than in younger ones such as
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the Azores, which is, for the most part, less than 1 My old (Fernández-

Palacios et al., 2011; Marques et al., 2020; Triantis et al., 2012). Our

results match this, with native non-endemic species in the Canary

Islands having higher vertical range than endemics. However, this was

not the case in Madeira, possibly related to the younger age of this

island (5 My) when compared to La Gomera and Tenerife (11 and

12 My, respectively) (Fernández-Palacios et al., 2011). Considering

that many indigenous spiders from the Canary Islands originated from

in situ speciation (Arnedo et al., 2001; Crespo et al., 2021; Emerson &

Oromi, 2005; Machado et al., 2017), it is expected that sympatric

endemic spiders had to adapt to a finer partitioning of available niche

space to avoid competition (Blackledge et al., 2003; Gillespie, 2005).

These richer communities might then be more resilient to invasions,

which was supported by our results, with the few introduced species

present in the archipelago having very low STD V compared to native

non-endemic ones.

Curiously, in Madeira epigean indigenous species showed very low

values of STD V. A possible explanation for this might be larger differ-

ences in microhabitats at lower strata of the forests than among the can-

opy (Sorensen, 2003). Another factor might be the presence of two

introduced species: Cryptachaea blattea (Urquhart, 1886), and Tenui-

phantes tenuis (Blackwall, 1852). These are epigean species with high ver-

tical range, being found on all strata of Madeira forests (see Appendix S4),

but in clearly higher proportion on the ground and herbaceous vegetation

(Boieiro et al., 2018). Boieiro et al. (2018) suggested that one of the rea-

sons for their success might be the lack of competition with indigenous

species. Although our results match this, properly assessing the competi-

tion with indigenous species would have to be tested with a broader set

of traits, which is beyond the scope of the current work.

In the Azores, as expected we did observe a large overlap in verti-

cality between all categories of colonization origin (Figure 2b). However,

we failed to observe high vertical range in introduced spiders. In general

Azorean arthropod communities have been described as much poorer

due to their isolation, young age and homogeneity of habitats on the

islands (Gaspar et al., 2008; Triantis et al., 2012). However, indigenous

species showed greater vertical range than introduced (Figure 2b),

with Rugathodes acoreensis Wunderlich, 1992 being the species that

most closely matches the profile of a super-generalist. The low STD V

of introduced species observed might be then due to many being

vagrants from exotic habitats (Borges, Ugland, et al., 2008; Borges &

Wunderlich, 2008), that are not able to establish sustainable populations

in a system dominated by well-adapted indigenous generalists.

CONCLUSIONS

The results obtained from our study did not support that introduced

spiders occur preferentially in the soil and herbaceous vegetation of

Macaronesia native forests. However, we did observe a higher verti-

cal mean and range in native non-endemic species, supporting a

higher level of generalism of the species not restricted to just one

archipelago. Finally, introduced species in the Azores occurred over

the entire vertical range studied, but were more restricted than

indigenous species. The two values obtained to characterize the

verticality of the spiders sampled were successful at giving us a bet-

ter insight into the vertical dynamics of the community of spiders

from the native forests of Macaronesia. However, our results stress

the need for a sampling scheme that documents properly the entire

vertical gradient of these forests to verify if the patterns found hold

at higher strata, as well as the need to document intraspecific differ-

ences among lifestages.
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