Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance

  • Articles in SCI Journals
  • Oct, 2015

Pires, C.A.L. & Perdigão, R.A.P. (2015) Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance.

Nonlinear Processes in Geophysics, 22, 87-108. DOI:10.5194/npg-22-87-2015 (IF2015 1,321; Q3 Geochemistry & Geophysics) NON-cE3c affiliated
Summary:

Non-Gaussian multivariate probability distributions, derived from climate and geofluid statistics, allow for nonlinear correlations between linearly uncorrelated components, due to joint Shannon negentropies. Triadic statistical dependence under pair-wise (total or partial) independence is thus possible. Synergy or interaction information among triads is estimated. We formulate an optimization method of triads in the space of orthogonal rotations of normalized principal components, relying on the maximization of third-order cross-cumulants. Its application to a minimal one-dimensional, periodic, advective model leads to enhanced triads that occur between oscillating components of circular or locally confined wave trains satisfying the triadic wave resonance condition.


https://www.nonlin-processes-geophys.net/22/87/2015/ Download Publication

Team

  • Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance Rui Perdigão Climate Change Impacts, Adaptation and Modelling - CCIAM